Acta Crystallographica Section C **Crystal Structure** Communications

ISSN 0108-2701

β -K₂Cr₂O₇

Sergey V. Krivovichev,^a* Elena V. Kir'yanova,^b Stanislav K. Filatov^b and Peter C. Burns^a

^aDepartment of Civil Engineering and Geological Sciences, 156 Fitzpatrick, University of Notre Dame, Notre Dame, IN 46556-0767, USA, and ^bDepartment of Crystallography, St Petersburg State University, University Emb. 7/9, 199034 St Petersburg, Russia

Correspondence e-mail: skrivovi@nd.edu

Received 1 February 2000 Accepted 10 March 2000

The monoclinic modification of dipotassium dichromate, β - $K_2Cr_2O_7$, has been synthesized in the $K_2Cr_2O_7-H_2O$ system. The structure consists of K^+ cations and $Cr_2O_7^{2-}$ dimers. In contrast with triclinic α -K₂Cr₂O₇ [Kuz'min, Ilyukhin, Kharitonov & Belov (1969). Krist. Tech. 4, 441–461], the $Cr_2O_7^{2-1}$ groups in β -K₂Cr₂O₇ have twofold crystallographic symmetry and are parallel to each other.

Comment

The monoclinic modification of $K_2Cr_2O_7$, *i.e.* β - $K_2Cr_2O_7$, was first described by Klement & Schwab (1960). Powder electron diffraction studies were performed by Zhukova & Pinsker (1964), who suggested space group $P2_1/c$. However, the structure resisted solution due to the absence of appropriate crystals. We present here the synthesis and single-crystal structure of β -K₂Cr₂O₇.

The crystal structure of β -K₂Cr₂O₇ is shown in Figs. 1(*a*) and 1(b). It consists of K⁺ cations and $Cr_2O_7^{2-}$ dimers, which have twofold crystallographic symmetry and are composed of two CrO₄ tetrahedra sharing a common corner (atom O3; Fig. 2). The K atom is coordinated by eight O atoms forming a KO₈ square antiprism. The structure may be described as built from layers of composition [K₂Cr₂O₇] parallel to the (100) plane

Figure 1

The crystal structures of (a) β -K₂Cr₂O₇ projected along the c axis, (b) β - $K_2Cr_2O_7$ projected along the b axis and (c) lopezite, α -K₂Cr₂O₇, projected along the c axis. Dashed lines indicate the layers (A', B' and A'')composed of $Cr_2O_7^{2-}$ anions (shown as polyhedra) and K⁺ cations (shown as spheres).

inorganic compounds

(Figs. 1a and 1b). All the $Cr_2O_7^{2-}$ anions in β -K₂Cr₂O₇ are approximately parallel to each other.

Fig. 1 compares the crystal structure of β -K₂Cr₂O₇ with that of triclinic α-K₂Cr₂O₇ (lopezite; Kuz'min et al., 1969). In contrast with β -K₂Cr₂O₇, the Cr₂O₇²⁻ groups in α -K₂Cr₂O₇ have two preferential positions at angles of $25-35^{\circ}$ (Fig. 1c). The structure of α -K₂Cr₂O₇ may also be described as built from [K₂Cr₂O₇] layers [parallel with (010)]. The structure of the triclinic modification may be obtained from that of the monoclinic modification by rotation of one of the two adjacent layers by 90°. Thus, layers A' and B' shown in Fig. 1(c) have the same structure but are rotated relative to each other by 90° in comparison with the mutual position of adjacent layers (A',B' and A'') in β -K₂Cr₂O₇.

An ORTEP (Johnson, 1965) plot of the $Cr_2O_7^{2-}$ anions in the title compound. Displacement ellipsoids are drawn at the 50% probability level. The symmetry code is as in Table 2.

Experimental

β-K₂Cr₂O₇ was synthesized in K₂CrO₄-K₂Cr₂O₇-H₂O polycomponent eutonic solutions (K₂O 19.17, CrO₃ 20.67, H₂O 60.16 wt%; saturation temperature 300.8 K, supercooling of 283-288 K).

Crystal data

$K_2Cr_2O_7$	$D_x = 2.724 \text{ Mg m}^{-3}$
$M_r = 294.20$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 523
$a = 13.0339 (17) \text{\AA}$	reflections
b = 7.3750 (10) Å	$\theta = 3-23^{\circ}$
c = 7.4672 (10) Å	$\mu = 4.175 \text{ mm}^{-1}$
$\beta = 91.923 \ (2)^{\circ}$	T = 293 (2) K
$V = 717.38 (17) \text{ Å}^3$	Plate, orange
Z = 4	$0.46 \times 0.24 \times 0.09 \text{ mm}$

Extinction coefficient: 0.0074 (11)

Data collection

52 parameters

+ 0.5383P]

 $w = 1/[\sigma^2(F_o^2) + (0.0513P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

Bruker PLATFORM diffractometer with a SMART CCD area detector w scans	1779 measured reflections 798 independent reflections 718 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$
Absorption correction: empirical via ψ scan (SAINT-NT; Bruker, 1998) $T_{\min} = 0.317, T_{\max} = 0.686$	$h_{\text{max}} = 28.26^{\circ}$ $h = -16 \rightarrow 17$ $k = -9 \rightarrow 9$ $l = -6 \rightarrow 9$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.084$ S = 1.107	$\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.52 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ } SHELXTL \end{array}$
798 reflections	(Bruker, 1997)

Table 1

Fractional atomic coordinates and equivalent isotropic displacement parameters (Å $^2).$

$U_{\mathrm{eq}} = (1/3) \Sigma_i \Sigma_j U^{ij} a^i a^j \mathbf{a}_i \cdot \mathbf{a}_j.$						
	x	у	z	$U_{ m eq}$		
Cr	0.39714 (3)	0.17429 (5)	0.13497 (5)	0.0213 (2)		
Κ	0.14473 (5)	0.15065 (9)	0.35562 (8)	0.0328 (2)		
O1	0.44153 (18)	0.3071 (3)	-0.0176(3)	0.0337 (5)		
O2	0.33753 (18)	0.2974 (3)	0.2780 (3)	0.0341 (5)		
O3	1/2	0.0595 (4)	1/4	0.0283 (6)		
O4	0.32025 (19)	0.0254 (3)	0.0494 (3)	0.0408 (6)		

Table 2

Selected geometric parameters (Å, °).

O4-Cr-O3	108.45 (11)		
O2-Cr-O1	108.33 (12)	Cr ^{vii} -O3-Cr	123.25 (15)
O4-Cr-O1	111.46 (12)	O1-Cr-O3	110.17 (9)
O4-Cr-O2	109.82 (13)	O2-Cr-O3	108.56 (9)
	(_)		(_)
$K - O1^{ii}$	2.859 (2)	K-O4 ^{vi}	2.965 (2)
K-O1 ⁱ	2.746 (2)	$K - O4^{v}$	2.886 (2)
Cr-O4	1.605 (2)	K-O2	2.814 (3)
Cr-O3	1.7819 (13)	K-O2 ⁱⁱⁱ	2.802 (2)
Cr-O2	1.620 (2)	$K - O2^{iv}$	2.764 (2)
Cr-O1	1.624 (2)	K-O1 ⁱⁱⁱ	3.039 (2)

Symmetry codes: (i) $\frac{1}{2} - x, \frac{1}{2} - y, -z$; (ii) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z$; (iii) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iv) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; (v) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (vi) $x, -y, \frac{1}{2} + z$; (vii) $1 - x, y, \frac{1}{2} - z$.

Data collection: *SMART-NT* (Bruker, 1998); cell refinement: *SAINT-NT* (Bruker, 1998); data reduction: *SAINT-NT*; program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *CRYSTAL-MAKER* (Palmer, 1999); software used to prepare material for publication: *SHELXTL*.

This work was supported (for SVK) by an NSF–NATO Fellowship in Science and Engineering (DGE-9903354).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1580). Services for accessing these data are described at the back of the journal.

References

- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SMART-NT and SAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Klement, U. & Schwab, G.-M. (1960). Z. Kristallogr. 114, 170-199.
- Kuz'min, E. A., Ilyukhin, V. V., Kharitonov, Y. A. & Belov, N. V. (1969). Krist. Tech. 4, 441–461.
- Palmer, D. C. (1999). CRYSTAL MAKER. Version 4.0. CrystalMaker Software, PO Box 183, Bicester, Oxfordshire OX6 7BS, England.
- Zhukova, L. A. & Pinsker, Z. G. (1964). Kristallografiya, 9, 44-49.