Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

$\beta-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Sergey V. Krivovichev, ${ }^{\text {a }}$ Elena V. Kir'yanova, ${ }^{\text {b }}$ Stanislav K. Filatov ${ }^{\text {b }}$ and Peter C. Burns ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Civil Engineering and Geological Sciences, 156 Fitzpatrick, University of Notre Dame, Notre Dame, IN 46556-0767, USA, and ${ }^{\text {b }}$ Department of Crystallography, St Petersburg State University, University Emb. 7/9, 199034
St Petersburg, Russia
Correspondence e-mail: skrivovi@nd.edu

Received 1 February 2000
Accepted 10 March 2000
The monoclinic modification of dipotassium dichromate, β $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, has been synthesized in the $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}-\mathrm{H}_{2} \mathrm{O}$ system. The structure consists of K^{+}cations and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ dimers. In contrast with triclinic $\alpha-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ [Kuz'min, Ilyukhin, Kharitonov \& Belov (1969). Krist. Tech. 4, 441-461], the $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ groups in $\beta-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ have twofold crystallographic symmetry and are parallel to each other.

Comment

The monoclinic modification of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, i.e. $\beta-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, was first described by Klement \& Schwab (1960). Powder electron diffraction studies were performed by Zhukova \& Pinsker (1964), who suggested space group $P 2_{1} / c$. However, the structure resisted solution due to the absence of appropriate crystals. We present here the synthesis and single-crystal structure of $\beta-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

The crystal structure of $\beta-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is shown in Figs. 1(a) and $1(b)$. It consists of K^{+}cations and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ dimers, which have twofold crystallographic symmetry and are composed of two CrO_{4} tetrahedra sharing a common corner (atom O3; Fig. 2). The K atom is coordinated by eight O atoms forming a KO_{8} square antiprism. The structure may be described as built from layers of composition $\left[\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right]$ parallel to the (100) plane

Figure 1
The crystal structures of (a) $\beta-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ projected along the c axis, (b) β $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ projected along the b axis and (c) lopezite, $\alpha-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, projected along the c axis. Dashed lines indicate the layers (A^{\prime}, B^{\prime} and $A^{\prime \prime}$) composed of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ anions (shown as polyhedra) and K^{+}cations (shown as spheres).
(Figs. $1 a$ and $1 b$). All the $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ anions in $\beta-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ are approximately parallel to each other.

Fig. 1 compares the crystal structure of $\beta-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ with that of triclinic $\alpha-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (lopezite; Kuz'min et al., 1969). In contrast with $\beta-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, the $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ groups in $\alpha-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ have two preferential positions at angles of $25-35^{\circ}$ (Fig. 1c). The structure of $\alpha-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ may also be described as built from $\left[\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right]$ layers [parallel with (010)]. The structure of the triclinic modification may be obtained from that of the monoclinic modification by rotation of one of the two adjacent layers by 90°. Thus, layers A^{\prime} and B^{\prime} shown in Fig. $1(c)$ have the same structure but are rotated relative to each other by 90° in comparison with the mutual position of adjacent layers $\left(A^{\prime}\right.$, B^{\prime} and $A^{\prime \prime}$) in $\beta-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

Figure 2
An ORTEP (Johnson, 1965) plot of the $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ anions in the title compound. Displacement ellipsoids are drawn at the 50% probability level. The symmetry code is as in Table 2.

Experimental

$\beta-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ was synthesized in $\mathrm{K}_{2} \mathrm{CrO}_{4}-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}-\mathrm{H}_{2} \mathrm{O}$ polycomponent eutonic solutions $\left(\mathrm{K}_{2} \mathrm{O} 19.17, \mathrm{CrO}_{3} 20.67, \mathrm{H}_{2} \mathrm{O} 60.16 \mathrm{wt} \%\right.$; saturation temperature 300.8 K , supercooling of $283-288 \mathrm{~K}$).

Crystal data

$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$M_{r}=294.20$
Monoclinic, $C 2 / c$
$a=13.0339$ (17) £
$b=7.3750(10) \AA$
$c=7.4672(10) \AA$
$\beta=91.923(2)^{\circ}$
$V=717.38(17) \AA^{3}$
$Z=4$
$D_{x}=2.724 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 523
\quad reflections
$\theta=3-23^{\circ}$
$\mu=4.175 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Plate, orange
$0.46 \times 0.24 \times 0.09 \mathrm{~mm}$

Data collection

Bruker PLATFORM diffractometer with a SMART CCD area detector
ω scans
Absorption correction: empirical
via ψ scan (SAINT-NT; Bruker, 1998)
$T_{\text {min }}=0.317, T_{\max }=0.686$
1779 measured reflections
798 independent reflections
718 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=28.26^{\circ}$
$h=-16 \rightarrow 17$
$k=-9 \rightarrow 9$
$l=-6 \rightarrow 9$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.084$
$S=1.107$
798 reflections
52 parameters
$\begin{aligned} w & =1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0513 P)^{2}\right. \\ & +0.5383 P]\end{aligned}$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.50 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.52 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: SHELXTL (Bruker, 1997)
Extinction coefficient: 0.0074 (11)

inorganic compounds

Table 1
Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}).

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	$U_{\text {eq }}$
Cr	$0.39714(3)$	$0.17429(5)$	$0.13497(5)$	$0.0213(2)$
K	$0.14473(5)$	$0.15065(9)$	$0.35562(8)$	$0.0328(2)$
O1	$0.44153(18)$	$0.3071(3)$	$-0.0176(3)$	$0.0337(5)$
O2	$0.33753(18)$	$0.2974(3)$	$0.2780(3)$	$0.0341(5)$
O3	$1 / 2$	$0.0595(4)$	$1 / 4$	$0.0283(6)$
O4	$0.32025(19)$	$0.0254(3)$	$0.0494(3)$	$0.0408(6)$

Table 2

Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cr}-\mathrm{O} 1$	1.624 (2)	$\mathrm{K}-\mathrm{O} 1^{\text {iii }}$	3.039 (2)
$\mathrm{Cr}-\mathrm{O} 2$	1.620 (2)	$\mathrm{K}-\mathrm{O} 2^{\text {iv }}$	2.764 (2)
$\mathrm{Cr}-\mathrm{O} 3$	1.7819 (13)	$\mathrm{K}-\mathrm{O} 2^{\text {iii }}$	2.802 (2)
$\mathrm{Cr}-\mathrm{O} 4$	1.605 (2)	$\mathrm{K}-\mathrm{O} 2$	2.814 (3)
$\mathrm{K}-\mathrm{O} 1^{\text {i }}$	2.746 (2)	$\mathrm{K}-\mathrm{O} 4^{\text {v }}$	2.886 (2)
$\mathrm{K}-\mathrm{O} 1^{\text {ii }}$	2.859 (2)	$\mathrm{K}-\mathrm{O} 4^{\text {vi }}$	2.965 (2)
$\mathrm{O} 4-\mathrm{Cr}-\mathrm{O} 2$	109.82 (13)	$\mathrm{O} 2-\mathrm{Cr}-\mathrm{O} 3$	108.56 (9)
$\mathrm{O} 4-\mathrm{Cr}-\mathrm{O} 1$	111.46 (12)	$\mathrm{O} 1-\mathrm{Cr}-\mathrm{O} 3$	110.17 (9)
$\mathrm{O} 2-\mathrm{Cr}-\mathrm{O} 1$	108.33 (12)	$\mathrm{Cr}^{\text {vii }}-\mathrm{O} 3-\mathrm{Cr}$	123.25 (15)
$\mathrm{O} 4-\mathrm{Cr}-\mathrm{O} 3$	108.45 (11)		

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1998); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: CRYSTALMAKER (Palmer, 1999); software used to prepare material for publication: SHELXTL.

This work was supported (for SVK) by an NSF-NATO Fellowship in Science and Engineering (DGE-9903354).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1580). Services for accessing these data are described at the back of the journal.

References

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SMART-NT and SAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Klement, U. \& Schwab, G.-M. (1960). Z. Kristallogr. 114, 170-199.
Kuz'min, E. A., Ilyukhin, V. V., Kharitonov, Y. A. \& Belov, N. V. (1969). Krist. Tech. 4, 441-461.
Palmer, D. C. (1999). CRYSTAL MAKER. Version 4.0. CrystalMaker Software, PO Box 183, Bicester, Oxfordshire OX6 7BS, England.
Zhukova, L. A. \& Pinsker, Z. G. (1964). Kristallografiya, 9, 44-49.

